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Abstract—Fully developed steady flows of purely viscous non-Newtonian fluids with viscous heat genera-

tions are usually governed by non-linear Sturm-Liouville differential system. It is shown that under certain

conditions that the non-linear eigenvalues of the system take a critical value above which no local solutions

are obtainable. The theory is applied to specific flow situations and an upper bound for this critical parameter

is evaluated in each case. It is shown that the non-linear heat generation term is responsible for double valued

pressure gradient flow rate characteristics in the models of screw extruder systems. Computed values of the
upper bound of the critical parameter are given for a specitic model ot a screw extruder.

NOMENCLATURE w,U,U,U, dimensionless velocity com-

Cartesian components of the

ponents:

stress tensor; o, dimensionless temperature:;
Cy s, b, material parameters; T*, constant shear stress in flat
e Cartesian components of the plate problem;
rate of deformation tensor: A, dimensionless shear stress or
I,, second invariant of e, ; pressure gradient;
D, isotropic pressure: A, parameter associated with A
T, temperature; obtained from the linear com-
T,, reference temperature; parison system;
K, thermal conductivity; Y.,Y, zero stress levels;
X, J. z, Cartesian coordinates in flat Jos zeroth order Bessel Function;
plate problems; P, pressure gradient ratio:
r, 9,z cylindrical polar coordinates: Q, flow rate.
Ve U,y U, Cartesian components of the All other minor symbols are defined in the text.
velocity vector;
Ugs U,, U, cylindrical polar components
of the velocity vector; INTRODUCTION
h, gap between flat plates; IT 15 well known that frictional heating effects
R, radius of right cylinder; are an important feature of many polymer melt
X,Y,Z, dimensionless coordinates; flows. Polymer melts can frequently be modelled
X, dimensionless radius in pipe by purely viscous non-Newtonian fluids. Reports

problem;

t Now at Department of Applied Mathematics and
Computing Science, The University, Sheffield.
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of critical parameters occurring in non-iso-
thermal flows of purely viscous (Newtonian and
non-Newtonian) fluids can be found in the
literature, for example, Joseph [1], Joseph [2],
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Gruntfest [12]. Turian [14], Winter [22]. For
some viscometric flows, Couette and Poiseuille.
exact solutions of the governing non-linear
ordinary differential equations have been devel-
oped (see Kearsley [8], Gavis and Lawrence
[9, 10]. Martin [13]. Turian [14]) and exact
values of the critical parameters, above which
no steady solutions exist, can be found. Other
more complicated models, Colwell and Nickolls
[16] Zamodits and Pearson [17] have no closed
form solutions and numerical computation is
necessary. For these flows if the viscosity of the
fluid is temperature dependent, critical values of
pressure gradient (shear stress) parameters can
occur, above which no steady flows exist. The
non-linear heat source can be shown to be
directly responsible for the double valued flow
rate-pressure gradient characteristics, which
have been exhibited in the literature. Joseph [2]
has indicated how a close upper bound to the
critical parameter of a non-linear system can be
evaluated from an associated linear system.
Cohen [23] has developed similar methods for
chemical reactors.

Section 2 gives the fluid model used in the
paper. Section 3 is devoted to retrieving the
exact values of critical parameters which occur
in some viscometric flows and comparing them
with the upper bounds obtained from the
associated linear systems. This should give
some confidence in the accuracy of the estimated
critical parameter when no closed form solution
can be found.

Section 4 gives results for the duct model of
a single screw extruder used by Zamodits and
Pearson [17]. Some numerical values for the
upper bound of the pressure gradient parameter
are given.

A brief account of the computational tech-
niques used in solving the linear Sturm-—
Liouville system is given in the Appendix.

1. DISCUSSION OF THE GENERAL GOVERNING
SECOND ORDER DIFFERENTIAL EQUATION

The non-dimensionalized energy cquation
occuring in the steady flow of incompressible
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viscous fluids heated by internal friction takes
the general form

= [pmﬂ] AR =0 (LD)
X dx

in some interval @ < x < b, where ¢, b > 0 and
A is a non-negative parameter. Joseph in a
number of papers [1-5] has discussed a more
specific case

d2y

Fes + Ay =0 (1.2)
with specific boundary conditions,
d
Lo=pn=o (13)
X

Here we shall endeavour to extend this theory
to deal with equation (1.1) and the general
homogeneous boundary conditions

p 3@ + @) pta) = 0
' (1.4)
o
dx

Systems similar to (1.1) with (1.4) have received
attention, with a different emphasis, from a
number of authors, for example, Cohen [23, 24],
Keller and Cohen [25], Dean and Chambré [26].

1t will be shown that under certain assumptions
there exists a value 4_, of 4 such that locally no
solutions of (1.1) subject to (1.4) exist for
A > A_. while at least two solutions exist for
)‘ < Acrix'

We shall consider the set of problems for
which p(x). f{x), ¢(x). ¢(y) are functions of at
least class C¥ on a < x < b, such that p{x) > 0.
is monotonically increasing, and f(x) > 0,
Y(x) > 0ina < x < b.Further it is assumed that
¢(p) is a monotonically increasing function of
¥ such that ¢() > 1 and ¢(0) = 1.

From the above assumptions it follows that

%[P(x)%] <0 ina<x<b (L5

B (b) + (b)Y(b) = 0.

crit
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Case 1

We shall consider dyy/dx > 0 at x = a, and
dy//dx < Oatx = b:theseconditions correspond
to heat flowing out of the system in the viscous
heating problem. With the above conditions
there is certainly at least one turning point
because diy/dx changes sign. Neglecting the
trivial case 4 = 0 equation(l.1) implies that

d dy

Consequently p(x)dy/dx is monotonically de-
creasing in (a, b). Since diy/dx changes sign in the
interval and p(x) > O throughout the interval
this implies that there is one stationary point in
(a, b) and this must be a maximum. With the
added restriction of increasing monotonicity
of p(x), dy/dx will be monotonically decreasing
in (a, b).

in (a, b).

Case 2

If dy//dx = O at one end point (corresponding
to an adiabatic heat boundary condition), then
there is certainly a stationary point, and since
diys/dx is monotonically decreasing in (a, b) there
can be no other stationary point in (g, b), so that
the maximum occurs at either x =aor x = b.

These results imply that a ___always exists
for a given set of boundary conditions and a
given A, in the same way one can consider 4
as a function of ¢ . It may be that y_.occurs
at different values of x in the interval as A
changes although the boundary conditions
remain the same.

It will be assumed that A is a continuously
differentiable function of _, to whatever order
we require.

Integrating equation (1.1) gives

b n
dy
= — . .6
=4 I ) [ f(7)¢{|/’(7)} dy (1.6)

Since dy/dx is a monotonically decreasing
function
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V/\

(= ¥0) (=) < ¥ < W
0

forx, < x<b,
where ¥(x,) = Vo = Y,

‘The monotonicity of ¢ implies that

ORI

Consequently equations(1.8),(1.6)and (1.7)imply
that

f - f oo - ven (=)}

b

<Y < Aoy )j )jf(v)dv (1.9

x X0

o)

b n

X dy < Y0 S ADY )j Jf(v)dv (1.10)

(1.7)

— = )} d)) < d(,). (1.8)
—

In particular

bj ()ff( {0 -

X0

()

which gives
b n
Gy dn
m o<1 el
) S HS Y U o) J e

X0 X0

x {w/,, — (b) (b”___j )} dv]_ L

where
b n
1 -1
= U——ff(v)dv] >0.
p(n)

The inequality (1.11) can be regarded as pro-
viding functions of iy, which are upper and lower
bounds of A considered as a function of .
The behaviour of the solutions of equation
(1.1)depends, in the main, on the order with which
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@(y,) increases with i . as y, tends to infinity.
We shall assume that the asymptotic develop-
ment of ¢ is of the form.

l’llim oLy, ] — Ayt (1.12)
Three cases can be considered with this asymp-
totic development of ¢, namely, 0 < k < 1,

=1, k > 1 the case of interest as far as the
later work is concerned being when k > 1.
For many viscous heating problems ¢(\f) = ¥,
with f§ a positive constant.

In this asymptotic limit

Gy e
—Tm e Tm 1.13
PR T S
where
b n
~ dﬂ (b_y>k ]‘1
G=||— : d 0.
Up(n)fm)b—xo ¥ >

It can be seen from equation (1.13) that as
y, — o0, 4 — 0. This implies that the parameter
is not a unique function of . Both the upper
and lower bounds for 4 given by (1.11) possess
two zeros and must, if continuous functions of
¥, each possess at least one maximum. Since
(1.11) implies that no solutions of equation (1.1)
exist when A exceeds the maximum value of the
upper bound there must exist a value 4 = 4_,
above which no solution to (1.1) can be found,
and below which at least two solutions can exist.
The above statement applies only to values of
4 in a neighbourhood of 4_,, . Existence of solu-
tions has been discussed by Reginer [6] and
Kaganov [7].

In the special case when dyr/dx = 0 at one
end point say x = a for definiteness, x, is re-
placed by a and equation (1.7) becomes

{l//m—llf(b)}<%:—z><¢<lpmforasxsb,

and (1.11) becomes
b n

Gy, an
o) Sh S m U P(n)j o)

a a
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b, -t

x{(wm—wo)<bfg)}dv} .
G_Uijmd]go
)Y '

a a

with

Using an argument similar to Joseph [1]
we can now show that the first stationary point
of A(y,) is maximum when d*¢/dy* = ¢” > 0.
Consider ¥ as a function of the parameter
and the variable x, and write

oy

o,

Equation (1.1) can be thought of as identity in

y,, in the sense that it is true whatever ¥, is

developed by specifying a value of A < 4_,.
Differentiating equations (1.1) and (1.4) gives

d
dxp

d | W
d_x[p(x) Ej| + I ()b + 24/ ()¢

(x) :—‘i’] + A (x)p + () = 0.(1.14)

+ AP Y + Ay =0, (L15)

with
dy ,
b5 (@) + vaa
X
= BB S 6) + WD) =0, (116
and
ﬁ(a)j—w (@) + y(aWr(a)
X
= ﬂ(b)%%(b) + 3(bWb) = 0. (1.17)

Multiplying equation (1.14) by ¥ and (1.15) byyr
and integrating over (a, b) gives
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()d—‘/’d—'/’d +ij

b
;P
[p(x)tﬁ j—_‘f] j

x f(x)py dx + A’jf(xypw dx =0 (1.18)
b
[p(x)w— ] f plx )——"’dx +Aj
X fx)g dx + 2/ f (98 dx
b ’ b
A Jf ()" ()* dx + A ff ()¢ dx = 0
(1.19)

Subtracting equation (1.19) from (1.18) and using
(1.16) and (1.17) gives

2] )6 d

1= (1.20)

J o dx

when A = 0. The functiods f, ¢, ¢" are all
positive so that the sign of 1 depends simply on
the function ¥. If i takes the same sign through-
out (a, b) then 1 is negative and the turning
point is a local maximum. We shall show using
a continuity argument that y must be positive
throughout (a, b) when 1 first vanishes.

It was assumed earlier that dy//dx > 0 at
x = aand dy/dx < 0 at x = b, assuming y > 0
implies that

) 7(b)
f@ < """ >

Equation (1.14) shows that as A — 0

d dy
dx |:p(x) a:| <0
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so that in this limit dy//dx is monotonically de-
creasing throughout. We shall now consider the
various distributions available to i in the interval

[a.b].

Case 1. dy/dx = 0 at an interior point of [a, b].

Suppose y <0 at x = g, then necessarily
dy//dx < Ofromthe boundary conditions.So that
in the limit 4 — 0, dyy/dx is a monotonically
decreasing function, which implies that y is
never positive. However, if y =, at x = x,,
then

V(X ¥p) = Vo

which upon differentiation with respect to

v, gives
LA
dx x=x°6l//m

But dyy/dx = 0 when y takes it maximum value,
therefore

+ uj/x:xo =1

lp.x=x0 =1

whatever the value of ¥, .

This result implies that y < 0 at x = a is
impossible, in the limiting case A — 0.

It migh be possible, however, for iy > 0 in the
limiting case and for \} to decrease to a negative
value as 4 increases. However, as y — 0,
dyy/dx — 0 so that in this limiting case the curve
would again never take positive values and the
condition ¥ = 1 at some X, €(a,b) would be
violated. Using this continuity argument it
follows that ¥ > 0 at x = a for all A up to the
first zero in its derivative dA/d¢__ . This implies
that > 0, dy//dx > 0 in a nelghbourhood of
x = a, for all 4, at least until di/d¢_, =0. A
similar argument is used at x = b. Suppose
Y <0 at x = b, then diy/dx > 0 at x = b. In
the limiting case 1 — 0 this would violate the
condition that dyy/dx is monotonically decreas-
ing, since there must be at least two turning
points if dy/dx > 0 at x = a and dy//dx > 0
at x = b. Hence, i > 0 is limiting case A — 0.
Again it may be possible for i to become nega-
tive as A increases. However.asy — 0.dy/dx — 0
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at x = b, and this would violate the condition
of decreasing monotonicity of dy//dx. So y > 0
at x = b for 1 increasing, at least until first zero
in 4 is reached. These results imply that ¥ > 0,
dy/dx < 0 in a neighbourhood of x = b at
least until dA/d¢ . = 0. )

It is still possible that  has a zero in (a, b)
for some A before di/d¢,, = 0. However,
if this is so then  must have at least two zeros
and  must be negative on some subinterval of
(a,b) and have a local minimum there. This
implies that in some neighbourhood of x = b
for positive i, dy/dx is increasing, which contra-
dicts the decreasing monotonicity condition
for positiveiy. Consequently is positive through-
out [a, b] and dyy/dx is monotonically decreasing
there. (The special case of a double zero at
some interior point does not invalidate the
argument). Equation (1.20) now implies that
at the first zero of A the turning point iV e
is a local maximum.

Case 2. djr/dx = 0 at an end point, x = a{(say)
A similar argument holds if dy/dx =0
(corresponds to dyr/dx = 0) at one end point, say
x = a for definiteness. Then iy must be positive
at x = a for all A before 4 = 0 and consequently
Y > 0in the interior of the interval, although it is
possible foryy = 0at x = b provided dys/dx < 0.

Case 3.y = O at both end points

If y = 0 at both end points, then dy//dx must
be monotonically decreasing in a neighbourhood
of each end point and by the same argument as in
Case 1, w has no other zeros on the interior of
[a. b].

In all cases under consideration there exists
a value 1_,, of 4 such that locally no solutions of
(1.1) subject to (1.4) exist for A > 1__ . while at
least two solutions exist for 4 < 4_,.

Joseph [2] has shown that the values of 4 > 0
for which (1.1) and (1.4) have positive solutions
 are bonded above by a composite expression.
If equations {1.1) and (1.4) are compared with the
linear homogeneous, self adjoint system
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A

d .
;%[P‘x) g%] + AW =0,  (1.21)
b0 @ + i@ = 0,
X
dj (1.22)
ﬂ(b)a (b) + y(by(b) = 0,
it can b(; shown that
ﬁ LA W d(v)/d(p)] dx ’
— < max—-,
§ fdod) dx v=0$Y)
7:'“ = b -1 (1.23)
0 1 + aﬁpoG(‘p)dX < lﬁm
{ I h l//m+1,
{fop dx

where A, JIO are the least eigenvalue and associ-
ated eigenfunction of system (1.21) and 1.22).
This result implies that

max y/¢(y)-

A< 4, min{ (1.24)

m Y m+ 1

2. FLUID MODEL

Throughout this paper we shall assume a
power law constitutive equation (see Pearson
[15]) which expresses the stress, to within an
arbitrary isotropic pressure, as a function of the
deformation rate tensor and temperature. The
constitutive equation can be written in Cartesian
tensor notation as

ty = —po,; + 217 FCoe N TTTI(I,) %,

ij=123 (21

where ¢, ¢;; and §;; are, respectively, the stress
tensor, the deformation rate tensor and the
Kroneckerdelta.1, = %ezueij isthesecond variant
of €D the isotropic pressure and T the absolute
temperature. C,, s and b are constants for any
given fluid modelled by equation (1.25). When
s =0, C, becomes equal to the Newtonian
viscosity. T, is a convenient reference tempera-

ture at which C, is measured.
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3. COUETTE AND POISEUILLE FLOWS

In this section we shall show that for those
flows to which closed form solutions exist the
upper bound of A estimated from the linear
Sturm-Liouville system (1.21) and (1.22) is
accurate to within 5 or 6 per cent. Numerous
exact solutions exist in the literature for fluids
modelled by a purely viscous constitutive
equation, Kearsley [8], Gavis, and Laurence
[9, 10], Nihoul [11], Gruntfest [12], Martin
[13] and Turian [14].

Plane Couette flow

We shall consider the simple shear flow of a
viscous fluid between two flat plates. Referred
to a rectangular cartesian coordinate system
Oxyz we assume that the lower plate lies in the
plane y = 0 and the upper plate lies in the plane
y = h, where z is measured parallel and y at
right angles to the plate. The upper plate is
assumed to move with a constant velocity V
in the z-direction while the lower plate is con-
sidered to be at rest. The steady state equations
of motion and energy for incompressible fluids
neglecting heating by convection are

iy o, 3.1)
dy
and
d:T dv
k&7 : _ 0. 32
o7 tiage =0 (3.2)

The thermal conductivity, K, of the fluid is
assumed constant.

The only non-zero stress component is given
by

1dv \*] ~*ldv
= 21-2s =WT-To) J "z ——2(33
t,, =2'"%C,e {(2 dy)} XTI )

where (0, 0, v,(y)) is the velocity distribution
between the plates. Two sets of boundary con-
ditions will be specifically considered here,
although more general homogeneous boundary
conditions can easily be discussed. (a) Plate
temperatures prescribed and equal.
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v, =0;

v, =U;

T=T,wheny =0,
T=T wheny=h.

(b) Stationary plate temperature prescribed,
moving plate thermally insulated.

(34

v, =0; T=T,wheny =0
(3.5
d
v, = U; —I=0wheny=h.
dy

We shall consider the dimensionless variables
W =uv,/U,Y = y/hand ¢ = H(T — T,)/G, (3.6)
where the Griffith number is defined as

_ bCOUZ—ZshZS.

G
K

3.7
The Griffith number determines whether heat
generation will lead to temperature differences
within the melt sufficient to affect the velocity
distribution locally.

The momentum equation can be integrated
once to give

t,, = t*forally. (3.8)
Substituting in the energy equation and non-
dimensionalizing results in the second order
ordinary differential equation

2

dé + Aexp {Go(n — 1)} =0,

377 (39)

where
bh2¢*n

2=
B CmlGK

7 __zsand/{:

n

is the stress parameter. The boundary conditions
to be satisfied are,

(a) W=0; ¢=0atY=0.
(3.10)

W=1; ¢=0at¥=1.

(b) W=0;, ¢=0atY=0.
a6 (3.11)

w=1; H=0atY=1.



1840

Case (a)

Solving the differential equation (3.9} and
using the specified boundary conditions gives 4
explicitly as a function of ¢

max

Gin = 1) = Bexp { = Gin = |
X {cosh‘ ! [exp g@._—_l)(z, }}2 (3.12)
2 max

Stationary points occur at di/d¢ . = 0. The
valueof ¢_, corresponding to thefirststationary
point of a positive 4 is

Glu — 1) — 1187,

max urit

(3.13)
The critical value of 4 is given by

Gin — 1)L = 3572 3.14)
Case (b)

The explicit relation for 1 is virtually the same
as for case (a)

Gin — DA =2exp {—Gn — 1)¢__ }

max}

_ 2
X {cosh‘1 [expﬂr%-}v) (ﬁmaxJ } (3.15)

giving critical values
G(n B 1)¢maxcrit = 1187
and G(n — 1)A (3.16)

The values of A_, have been obtained by Turian
[14] as a special case in his discussion of critical
stress parameters for an Ellis fluid in plane
Couette flow. Joseph [2] has obtained a similar
value with n = 2 for a Newtonian fluid. Winter
[22] has shown that for his analysis of the un-
steady temperature field in plane Couette flow
with the viscosity depending lLinearly upon
temperature a critical value of B, arises. f§ is
the temperature coefficient in the viscosity
and B, is a Brinkman number which incorporates
a shear stress. Winter finds that the critical value
for BB, is 7, above this value the heat generated
by dissipation cannot be conducted to the walls
rapidly enough; consequently the temperature
increases continuously with increasing time to
higher and higher values. Gruntfest [12] intro-

= 0-893.

erit
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duces a time ratio in his work on the unsteady
temperature field which is, however, simply
related to the shear stress parameter developed
by Joseph [2], and in this paper. He finds that
the critical value of the time ratio above which
the temperature increases without limit s 0-88,
and the maximum steady valueofthetemperature
is 1-19, in agreement with this paper. For values
of 2> A, no steady state solutions to the
problem exist locally, while for 4 < 4 ; one
value of 1 can correspond to two distinct
maximum temperatures in the flow. The homo-
geneous, self adjoint, linear comparison system
which gives an estimated upper bound for 4__,
will be

dz

Zﬁ% + AG(n — 1) = 0.

(3.17)
and the boundary conditions {3.10) and {3.11}.

For the case of exponential temperature de-
pendence referring to equation (1.23), max (ye ™ *)
occurs at y = 1 and takes the value e”'. An
estimated upper bound for A, will then be
oo = Ag/e. where A is the first positive eigen-
value of the linear comparison system. Putting
AG(n — 1) = k%, the linear Sturm-Liouville
system gives k asthe root of sink = O(case(a)}and
cos k = O{case (b)).

The estimated values of A__ are

erit
7[2
Gln — iy = & = 3632

case (a): erit

{3.18)
2
L
=t 0-908.

case(b): Gn — A

crit

It can be seen that the error in the estimated
stress parameter is approximately 2 per cent,
independent of the power law parameter n.

Poiseuille cylindrical pipe flow

The governing equations for the steady flow
of viscous fluid in a cylindrical pipe with circular
cross section referred to cylindrical polar co-
ordinates (r, 6, z) are
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Linear momentum

li(rt )— _dtzz
rdrs 7 T dz’

(3.19)
where the z-axis is considered to be along the
centre of the cylinder parallel to the generators,

and

Energy

Kd/ dT do,
dr (r dr> +t, > 0. (3.20)
The energy equation (3.20) expresses the fact
that all the heat generated by internal friction
within the pipe is assumed to be conducted
away radially.

The only non-vanishing stress components
are t,_and t_ given by

1dv \] *dv
— 7~ 2s —b(T—To) e 1 z
t,=2"%C, e {(2 ar )} ar’

t,, = —D

We shall discuss the simple boundary con-
dition v, = 0: T = T, at r = R, the wall of the
cylinder. The only difficulty that arises from
consideration of a general homogeneous heat
flux boundary condition is algebraic.

The momentum equation again can be inte-
grated to give

(3.21)

(3.22)

. = dpr
.
where the requirement of finite velocity gradient

at r = 0 enables the constant of integration to
be set equal to zero.

(3.23)

Writing
d_P T ebT-To\ |~
do, dp| |dz||2 -
5 sy o (3.24)

0

in order that a negative pressure gradient
corresponds to negative velocity gradient even
for general non-integer values of 1/1 — 2s and
substituting into the energy equation results in
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Kd/ dT + dp|r
rar\ ar d,|2
‘(H’_ T wT-To) %
X 1912 =0 (325
C

0

Again introduce the dimensionless variables

r WT — T,) bC R[22
X =—, = G = o -
* ¢ G K

R
(3.26)
with U a characteristic velocity, for example,
the mean flow velocity Q/nR? with Q the
volumetric flow rate.
The energy equation is given in non-dimen-
sional form as

—d—<x 99) + X"t Lm0 = 0, (3.27)

dx\ " dx
where
b d_p " Rn+2
- 1dz
- GK2Ci!

is a pressure gradient parameter. The boundary
conditions are ¢ =0 at x = 1, d¢/dx = 0 at
x = O(symmetry)so thd the maximum tempera-
ture occurs at the pipe centre. This equation
has been solved in closed form by Martin [13],
who showed that a physically realisable flow
is possible only if

(n + 2)7?

G(n — 1A < (3.28)

by consideration of the roots of a quadratic
equation. This is essentially equivalent to finding
the first stationary point for A considered as a
function of ¢,

One finds that a stationary point occurs when

exp<—G (n = ) ¢m> =1 (329)

which consequently gives

Gn—ni = :2)2.

(3.30)

crit
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The linear comparison system for an esti-
mated value of 4 is now given by

2
dd)+ d¢+AG Dx"*2¢ = 0, (3.31)
dx? dx
and
¢ =0atx =1, %=0atx=0 (3.32)

The substitution x = &*reducesthe differential
equation to that of the zeroth order Bessel
equation of the form

42 dé
Pip tEge T e =0 (3
with
2 2 g

The eigenvalues are given by the roots of the
equation

Joy) = 0. (3.35)
The smallest positive roots of this equation is
y = 2:405. (3.36)

This implies that
(2-405)* (n + 2)*

G(n - l)j‘cri! est = e 4 ) (337)
Consequently
A it t 2e
critexact _ = ()-94. 3.38
j'critest (2405)2 ( )

These results indicate that the error in taking the
estimated A__ is only 6 per cent, again indepen-
dent of the power law parameter n.

The two cases above should give some confi-
dence that A_, estimated from the linear com-
parison equation is a reasonable upper bound
for the exact A_,,.

Other well known steady flows have been
investigated in a similar manner. The energy
equations for Couette flow between concentric
cylinders, mixed drag and pressure flow between
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flat plates and annular flow are given by Martin
[13]. The results obtained by applying the
general theory in Section 1 to these flows are
given in [27].

4. SCREW EXTRUSION OF POLYMER MELTS:
THE FINITE DUCT

We shall consider the model used by Zamodits
and Pearson [17] for full developed flow in the
metering section of a single screw extruder.
A detailed account of the approximations made
in this model and other similar models is given
in a report by Martin, Pearson and Yates [18],
and Zamodits and Pearson. Further references
to screw extrusion models can be found in
Tadmor and Klein [19]. In the model of
Zamodits and Pearson a single-start screw of
outer diameter D is considered with constant
channel depth h, and constant [ (this implies a
constant helix angle «). An unrolling procedure
can be adopted if h/D < 1. This allows the
effects of curvature to be neglected and the helical
flow can be replaced by flow in a long shallow
box. For almost all polymer melts the viscous
forces generated are very large compared to
those due to gravity and inertia (i.e. the Reynolds
number associated with the flow is small com-
pared to unity). The linear momentum equation
can be replaced by a simple stress equilibrium
equation. With this assumption it does not
matter whether the screw is considered to move
relative to a stationary barrel or vice-versa.
Zamodits and Pearson considered the (three-
sided) bottom of the channel to be stationary
and the plane representing the barrel to move
relative to it.

A right-handed Cartesian coordinate system
is chosen, with the x axis pointing in the ‘down
stream’, direction, i.e. parallel to the walls of the
box, the y axis perpendicular to the barrel. and
the z axis roughly perpendicular to the flights.

If further a wide channel approximation is
used, namely the depth h is small compared with
the pitch | of the screw, then the lubrication
approximation (see Pearson [15]) can be used.
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This implies that over most of the flow region
the velocity distribution is given solely by the
relative motion of the top and bottom surfaces
of the channel and by the local pressure gradient
grad p where p = p(x, z). The problem involves
only two velocity components u_and u,, which
are taken to be functions of y only. The depth h
and grad p are taken to be constant.

The effect of the flight walls is felt, in this model,
solely through the restriction it places on the
cross-stream mass flux

u_ dy. 4.1)

z

Q ey e

q, =

For a perfectly fitting screw
4.2)

Zamodits and Pearson have considered fully-
developed temperature dependent solutions for
which the temperature T varies only with y (i.e.
local solutions). These fully-developed flows
seem to be applicable only in the last few turns
of screws with long metering sections.

The x momentum equation is

q,=0.

sz @
The z momentum equation is
a%(# i@ - ‘;—’Z’. 44)

No-slip boundary conditions imply that
u, = NnD cos a,
u, = NnD sin o at the barrel y = h, 4.5)
and

u,=u, =0atthescrewy =0, (4.6)

where N is the rate of revolution of the screw.
The energy equation is

2
dy”

wheret_, ¢t , are the non-zero shear stress com-

xy® "z

K te b, tet, = 0, 4.7
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ponents and e, , e, are the non-zero components
of deformation rate.

We shall consider (for definiteness) an insula-
ted screw and a barrel maintained at a convenient
specified temperature. Again homogeneous heat
transfer boundary conditions can be considered.

These conditions imply that

dT

ok Oaty =0,and T = T aty = h. (4.8)
Using a purely viscous power law constitutive
equation (see 2.1) the only non-zero shear
stress components are given by

du_\* du \*1*
— =b(T —To) x z
oG (5]

du du
X = C—= .
X O &’ (4.9)
L(du \? du \?1"*
t =C. e tT-To | 2
w08 [(dy) +<®>]
du du
2= C—2, .
x & O (4.10)

A first integral of the momentum equations (4.3)
and (4.4) yield

Cdu

. _p
O ax(y Yo (4.11)
and
du, _ 0Op
Cai=Pig -y @1

where y,, y, are zero stress levels and P, is a
dimensionless pressure gradient ratio

9p |op
0z/ ox’

If the dimensionless variables

Y=y/h9 Y1=y1/h’ Y2=y2/h
u

X uz

=—= U =—%— 4.1
* 7DN cosa 2 naDNsina (.13)



1844

together with

T - T,)

o= b G - bCo(NTD) ™ 2k

G ) K

(4.14)

are introduced, the energy equation (4.7) re-
duces to

d2

g+ MY = X PHY = gy

x e~ UGp =0, 4.15)
where
hn+2b a_p "
ox
=~ 4.16
A KGC’(‘)'1 (4.16)

is a dimensionless pressure gradient parameter.
The temperature boundary conditions are
given by

g%=0at Y=0and¢p =0atY = 1.(417)

Zamodits and Pearson prescribed A then iterated
on the three integral equations

1
cosa = A"t Z[)e‘"’”G"’(Y —~ Y)F(Y)dY, (4.18)

1
sina = A" ! ge""”‘;"’Pl(Y - Y)F(Y)dY, (4.19)

1Y
0= 5 _f Py = Y)F(y) e~ VS dy dy, (4.20)
00
where

F(Y) = {(Y — Y,)* + PAY — Y,)}}"%. (421)

The dimensionless flow rate Q is then calculated
after convergence from

Q = n1 [ [ SO-19FG)(y — Y)dYdy. (4.22)
00

The double valued characteristics obtained by
Zamodits and Pearson must have been obtained
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by trying starting values for Y,, Y, and P, in
the iteration scheme.

The suggestion by Martin [20] that the flow
rate Q is specified and an iteration scheme de-
veloped for 4 is more appropriate to the present
paper. With this scheme Martin has reproduced
the double valued characteristics of Zamodits
for large Griffith number. The theory in Section
1 confirms that for specified Y,, Y, and P,,
a single value of 4 < 4_;, can be associated with
two distinct temperature profiles which will
satisfy equation (4.15). Substituting these values
for Y,. Y,, P, and A together with the distinct
temperature profiles into equation (4.22) will
give two distinct values for @ corresponding
to a single value for A. This suggests that mathe-
matically it is the choice of a non-linear heat
source which produces the double valued
characteristics obtained by numerical computa-
tion. It is to be noted that double valued charac-
teristics are not observed in the isothermal casc.
Physically the pressure gradient parameter can
be increased to a certain critical level by increas-
ing the speed of the screw say, above this level
the heat generated by viscous dissipation cannot
be conducted away to the barrel walls rapidly
enough and no steady state condition will exist.
The temperature will increase indefinitely.
Zamodits and Pearson have given a physical
explanation for a decrease in Q@ when / increases,
but they have not tried to explain why they obtain
double valued characteristics.

The linear comparison system for the finite
duct problem 1is

d*¢

dy?
together with equations (4.17). Evaluation of
A from this system should be useful in the sense
that it gives a bound on the first guess for / in
the iteration scheme. Obviously a choice of
A > A, would not provide a solution to the
system. It is noticeable that Martin [20] has
values of pressure gradients for which he says
a solution is unobtainable. Typical numerical
values of A(n — 1)G for specific Y,, Y,, P, and n

+ AF(Y)(n — )G9 =0, (4.23)
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are given in Tables 1-3. It must be noted that the
condition of no mass flow in the transverse
direction implies that U_ has a stationary
value in the interval 0 < Y < 1, so that neces-
sarily 0 < Y, < L.

Tables 1-3. Critical value of the pressure gradient parameter A
Jfor various values of Y, Y, and P, (n = 1-31)

Table 1. P, = 02
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DISCUSSION AND CONCLUSIONS

We have been able to present evidence that
various models of steady flow problems with
temperature dependence exhibit double-valued
solutions. This means that for a given pressure
gradient, say, there exists two entirely different
temperature profiles. Since the energy and linear
momentum equations are coupled through the
temperature, the two different temperature
profiles give rise to two distinct velocity profiles.
Consequently one expects to obtain two different

Y, 0-10 030 0-50 . .
y flow rates for a given pressure gradient. Further-
1 . .
more, it has been shown that there exists a
—-020 2100 2106 2:094 value of the pressure gradient (shear stress) above
—-015 2-372 2:379 2-363 . .
—010 2708 2717 2693 which no solutions to the steady problem can
—0:05 3126 3137 3099 be found. Within the limitations of the models
000 3652 3661 3601 used this implies that for certain pressure gra-
0-05 4-298 4-306 4211 di h dv fl Kk
010 5046 5068 4932 ients (shear stressqs) no steady flow can take
015 5862 5925 5740 place. It has been pointed out, Pearson [21], that
020 6673 6800 6656 in practice a certain amount of heat leakage into
025 7314 7529 7:251 h d ke pl It i b
0-30 7556 7-844 7.558 the apparatus does take p ace. It is not to be
035 7:248 7-530 7-308 expected that instability criteria fora complicated
040 6316 6745 6605 thermo-mechanical system can be generated
0-45 5638 5804 5729 ; il hani N s f
0-50 4-808 2922 4884 rom a single mechanism. Nature is far more
devious than this. We are saying that if tem-
perature were the dominant feature of the
o Table 2. P, =10 stability mechanism then the critical pressure
Y, 010 020 030 0-40 0-50 gradients will lie in a neighbourhood of the
Y calculated values.
—020 1813 1903 1921 1866 1752 Zamodits and Pearson [17] have given a
—010 2207 2352 2379 2985 2101 physical explanation of certain regions of the
000 2715 2954 3000 2837 2535 characteristics they have obtained for their
0'10 2288 3704 3797 3523 3033 screw extrusion model. We have shown why
020 3704 4425 4650 4235 3503 ; . .

030 3797 4650 5108 4644 3754 their assumed theoretical model gives double-
040 3523 4235 4644 4385 3626 valued pressure gradient flow rate characteristics.
_?'50 3033 3303 3754 3626 3183 The exponential dependence upon temperature
Tahle 3. P, = 50

Y, 010 015 0-20 025 030 035 0-40 045 0-50

Yl
-020 0-567 0-647 0722 0777 0-795 0767 0-709 0620 0-539
0-00 0602 0-695 0786 0-857 0-883 0-848 0-766 0667 0-572
020 0617 0720 0-825 0909 0942 0904 0-810 0-698 0-593
0-40 0-609 0711 0-816 0-904 0942 0909 0-817 0-704 0-598
0-60 0-585 0-678 0772 0-849 0-883 0-871 0778 0679 0-583
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of the viscosity and the coupling of the momen-
tum and energy equations will lead to an ordinary
differential equation which predicts such charac-
tersistics. It is easy to believe that if internal
friction produces heat at too great a rate that
it cannot be conducted away at a rate sufficient
to establish steady fully developed conditions.
It is harder to believe that in practice for a
given pressure gradient the fluid has a choice of
two fully developed temperature profiles. The
answer to this problem may lie in the way that
the temperature profile has developed along the
screw extruder, Martin et al. state that in practice
fully developed flows will not readily arise
although such solutions effectively yield upper
limits on the temperature gradients that can be
achieved in the melt. Also in practice convective
effects caused by the presence of flight walls will
be highly important. The estimation of A from the
linear comparison system could be some help
in deciding on values for the first guess in the
iteration scheme used to calculate pressure
gradient-flow rate characteristics.
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APPENDIX

Computational Scheme
1. General method
We are concerned with the calculation of the smallest
eigenvalue of equations of the form
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d?¢
+ AF(Y =0 Al
ar? (V)¢ (A1)
subject to homogeneous boundary conditions
d¢
hy a—)—/(O) + koo(0) =0
(A2)

d
hl—i (1)+ k(1) = 0.

We construct a complete set of orthogonal functions
{¢, (M}, n = 1,2,... which satisfy the boundary conditions
(A.2) and express the eigenfunction ¢ as an infinite series

6= 3 as,. (A3)

We then substitute a finite number of terms of (A.3) in (A.1)
converting the problem into an algebraic eigenvalue problem.

2. Construction of the orthogonal functions
Consider the function ¢ = e* coswY. This function
satisfies the equation
d? d
e _ Zaﬁ + (@ +wh)p =0
dy? dY

and satisfies the boundary conditions (A.2) if
(@) hor + k, =0
(ii) h,wsinw = (h,a + k,) cos w.

We assume that h, # 0. (If h, = 0, we construct a set of
orthogonal functions in a similar manner starting with
¢ = ¢*Y sin wY) We thus have a = —ky/hy, and w a root of
the equation Y tan Y = K where K = (k,hy, — kh,)/hoh, if
h, # 0, or of the equation cos Y = 0if h, = 0. Let Wi, Wa,.
be the positive roots of the equation Ytan Y =k (or of
cos Y = 0if h, = 0) arranged in order of increasing magni-
tude. and let ¢, = e*" cosw, ¥, n = 1,2,... The functions
¢,(Y) form a complete set of orthogonal functions on the
interval [0, 1] with respect to the weight function ¢~ 2**
being the eigenfunctions of the Sturm-Liouville system

d
— —20—+ (@ +1)¢p=0

subject to boundary conditions (A.2).

3. Matrix formulation
Having constructed the eigenfunctions {¢ (Y)}, we substi-
tute a finite approximation for the eigenfunction

¢~ i ad,
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into (A.1) and derive the equation

N N N
Z an(aZ - W:)¢n - 2a Z a,w, Z bnm¢m
1 n=1 m=1i

N N
+ AN Z an Z Cnm¢m = 0’
n=1 m=1
where
sinw,Y = Z b, cosw,Y,
m=1
$(Y)cosw, Y=Y ¢ _cosw,Y
m=1
and A, approximates 4.
This leads to the matrix equation
Ea = A Fa (A4)

where E and F are N x N matrices whose (n, m) elements are
given respectively by

{Zawmbm, m#n

e =

o 2awb, + w: —a’,m=n,
j;lm = Cnm’

and a is the column vector (a,, a,. . .. a")T.
If we let u, = 1/4, and G = E™'F, then (A.4) becomes

(G — pyDa = 0). (A5)

4. Computation

(i) The matrix E is well-conditioned in general, the size of
the elements decreasing away from the main diagonal,
and the method of Gaussian elimination with pivotal
condensation was used to evaluate E~ 1.

(ii) Since the smallest value of 1 was required, the power
method was used to evaluate the largest eigenvalue
of equation (A.5).

(i) The positive roots of equation Y tan Y = K were
found using an iterative method based on the equation

Y = tan” Y(K/Y).

(iv) The computations were carried out on an I.C.L. 1903A
computer at Lanchester Polytechnic. The size of N
required to give three place accuracy naturally varied
according to the values of the parameters, but in most
cases N = 8 was sufficient. Mill time also varied, an
average time for the calculation of a single eigenvalue
being 6s,

The Tables 1-3 were produced in the case of the screw
extruder for (n = 1-31) for various values of the para-
meters Y, ¥, and P, the tabular values being those for
A/e and the boundary conditions d¢/d Y(0) = 0, ¢(1) = 0.
In this case

F(Y)=[(Y — Y,)* + PXY — Y,)*T"2.

—

(v
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DISCUSSION SUR DES PARAMETRES CRITIQUES QUI PEUVENT INTERVENIR DANS
L’ECHAUFFEMENT PAR FROTTEMENT POUR UN FLUIDE NON-NEWTONIEN

Résumé—Des écoulements permanents entierement établis de fluides visqueux non-newtoniens avec
génération de chaleur par viscosité sont en général représentés par des systémes différentiels de Sturm—
Liouville. On montre que sous certaines conditions, les valeurs propres non-linéaires du systéme prennent
une valeur critique au-dessus de laquelle on ne peut obtenir de solutions locales. La théorie est appliquée
a des situations spécifiques d’écoulement et dans chacun des cas une limite supérieure est évaluée pour
ce paramétre critique. On montre que le terme non-linéaire de génération de chaleur est responsable des
caractéristiques de débit ou le gradient de pression a deux valeurs dans les modeéles de systémes d’extrudage
par vis. Des valeurs calculées de la limite supérieure du parameétre critique sont données pour un modele
spécifique d’extrudeur a vis.

DISKUSSION KRITISCHER PARAMETER, DIE IN STROMUNGEN
NICHT-NEWTONSCHER FLUSSIGKEITEN BEI AUFHEIZUNG DURCH REIBUNG
VORKOMMEN

Zusammenfassung— Vollausgebildete stationdre Stréomungen von viskosen nicht-Newtonschen Flissig-
keiten mit Aufheizung durch Reibung werden gewohnlich durch nichtlineare Sturm-Liouville-Differential-
Gleichungssysteme dargestellt. Es wird gezeigt. dass unter bestimmten Bedingungen die nichtlinearen
Eigenwerte des Systems einen kritischen Wert annehmen, oberhalb dessen keine lokalen Losungen mehr
angebbar sind. Die Theorie wird auf spezifische Strémungssituationen angewendet und die obere Grenze
fiir diesen kritischen Parameter wird fiir jeden einzelnen Fall ausgewertet. Es wird gezeigt, dass der Ausdruck
fiir die nichtlineare Wirmeerzeugung verantwortlich ist fiir die Durchflusscharakteristik mit doppelt
gewertetem Druckgradient bei den Modellen fiir Schnecken-Extruder-Systeme. Es wurden berechnete
Werte der oberen Grenze des kritischen Parameters fiir ein spezielles Modell eines Schnecken-Extruders
angegeben.

AHAJIW3 KPUTUUYECKHUX MAPAMETPOB B 1IOTOKE HEHBIOTOHOBCKON
HUIKOCTH NIPU HATPEBE TPEHUEM

AHHOTaIA—I10JHOCTEIIO pa3BHThIe CTALMOHAPHBIE TeUeHHA YACTO BABKUX HEHBIOTOHOBCKUX
HUIKOCTEN ¢ TENJIOBHIEIEHHEM 33 cUeT TpeHUA O0OLYHO ONUCHIBAIOTCA CHCTeMON HeJIUHeHHbIX
augdepenunanbusix ypaBHeunit tina llIrypma-JInysunana. [lokasano, 4ro mpn onpegeseH-
HBIX YCJIOBHAX HeJMHeHHBe COOCTBeHHBIE 3HAYeHUA CHUCTEMBl NPHHUMAIOT KPUTHYECKOE
3HAYEHHE, BBIE KOTOPOrO JaKalbHBE peIleHHA HeBO3MOHH. TeophA TNpUMEHAeTCA K
KOHKDETHHIM CIIy4asM TeYeHWS, N B KAKIOM CJyyae ONpefesAeTCA BepXHHMIl Ipefes JaHHOro
KPATHYECKOTO TIapaMeTpa.

[oKaBaHO, YTO XAPAKTEPUCTUKH CKOPOCTH OTOKA, BHIBBAHHOTO YABOEHHEIM (110 CPaBHEHHIO
¢ OGBIYHEIM) PPAIHEHTOM TABJICHHA B MOIEIAX BHHTOBHX 9KCTPYHAEPHHIX CHCTeM , 00y CIIOBIEHH
HEJMHEHHOCTBIO THIIA TeIIOBHileeHnsA. [IpHBONATCA 3HAYEHHMA BEPXHEro Ipeflelia KpUTH-

4ecKOT0 HapaMeTpa IJIA KOHKPETHO MOJeNn BHHTOBOIO 3KCTpYIepa.



