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Abstract-Fully developed steady flows of purely viscous non-Newtonian fluids with viscous heat genera- 
tions are usually governed by non-linear Sturm-Liouville differential system. It is shown that under certain 
conditions that the non-linear eigenvalues of the system take a critical value above which no local solutions 
are obtainable. The theory is applied to specific flow situations and an upper bound for this critical parameter 
is evaluated in each case. It is shown that the non-linear heat generation term is responsible for double valued 
pressure gradient flow rate characteristics in the models of screw extruder systems. Computed values of the 

upper bound of the critical parameter are given for a specific model of a screw extruder. 

NOMENCLATURE 

Cartesian components of the 
stress tensor; 
material parameters; 
Cartesian components of the 
rate of deformation tensor: 
second invariant of eij; 
isotropic pressure: 
temperature; 
reference temperature; 
thermal conductivity; 
Cartesian coordinates in flat 
plate problems: 
cylindrical polar coordinates: 
Cartesian components of the 
velocity vector; 
cylindrical polar components 
of the velocity vector; 
gap between flat plates; 
radius of right cylinder; 
dimensionless coordinates; 
dimensionless radius in pipe 
problem; 

t Now at Department of Applied Mathematics and 
Computing Science, The University, Sheffield. 
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dimensionless velocity com- 
ponents; 
dimensionless temperature; 
constant shear stress in flat 
plate problem; 
dimensionless shear stress or 
pressure gradient; 
parameter associated with 1 
obtained from the linear com- 
parison system; 
zero stress levels; 
zeroth order Bessel Function; 
pressure gradient ratio: 
flow rate. 

All other minor symbols are defined in the text. 

INTRODUCTION 

IT IS well known that frictional heating effects 
are an important feature of many polymer melt 
flows. Polymer melts can frequently be modelled 
by purely viscous non-Newtonian fluids. Reports 
of critical parameters occurring in non-iso- 
thermal flows of purely viscous (Newtonian and 
non-Newtonian) fluids can be found in the 
literature, for example, Joseph [I], Joseph [2], 

1833 



1834 E. A. TROW~RI~GE and J. H. KARRAN 

Gruntfest [12]. Turian 1141, Winter 1221. For 
some viscometric flows. Couette and Poiseuille. 
exact solutions of the governing non-linear 
ordinary differential equations have been devel- 
oped (see Kearsley [S], Gavis and Lawrence 
[9, lo], Martin [t3]. Turian [14]) and exact 
values of the critical parameters, above which 
no steady solutions exist, can be found. Other 
more complicated models, Colwell and Nickolls 
[ 161 Zamodits and Pearson [ 171 have no closed 
form solutions and numerical computation is 
necessary. For these flows if the viscosity of the 
fluid is temperature dependent, critical values of 
pressure gradient (shear stress) parameters can 
occur, above which no steady flows exist. The 
non-linear heat source can be shown to be 
directly responsible for the double valued flow 
rate-pressure gradient characteristics, which 
have been exhibited in the literature. Joseph [2] 
has indicated how a close upper bound to the 
critical parameter of a non-linear system can be 
evaluated from an associated linear system. 
Cohen [23] has developed similar methods for 
chemical reactors. 

Section 2 gives the fluid model used in the 
paper. Section 3 is devoted to retrieving the 
exact values of critical parameters which occur 
in some viscometric flows and comparing them 
with the upper bounds obtained from the 
associated linear systems. This should give 
some confidence in the accuracy of the estimated 
critical parameter when no closed form solution 
can be found. 

Section 4 gives results for the duct model of 
a single screw extruder used by Zamodits and 
Pearson 1171. Some numerical values for the 
upper bound of the pressure gradient parameter 
are given. 

A brief account of the computational tech- 
niques used in solving the linear Sturm- 
Liouville system is given in the Appendix. 

1. DISCUSSION OF THE GENERAL GOVERNING 
SECOND ORDER D~RENTIAL EQUATION 

The non-dimensionalized energy equation 
occuring in the steady flow of incompressible 

viscous fluids heated by internal friction takes 
the general form 

-g P@ + #lx) qw = 0 
[ .I 

(1.1) 

in some interval a < s < b, where a, b 3 0 and 
,? is a non-negative parameter. Joseph in a 
number of papers [i-5] has discussed a more 
specific case 

2 + @(lC/) = 0 

with specific bounda~ conditions, 

dq(l &O, = tl/(l) = 0. 

(1.2) 

(1.3) 

Here we shall endeavour to extend this theory 
to deal with equation (1.1) and the general 
homogeneous boundary conditions 

B(a) $ (a) + y(a) $(a) = 0 

(1.4) 

B(b) 2 (b) + Y(b) 40) = 0. 

Systems similar to (1.1) with ( 1.4) have received 
attention, with a different emphasis, from a 
number of authors, for example, Cohen [23,24], 
Keller and Cohen [ZS], Dean and Chambre [26]. 

It will be shown that under certain assumpt ions 
there exists a value ;icrit of 2 such that locally no 
solutions of (1.1) subject to (1.4) exist for 

’ ’ 'wit 
while at least two solutions exist for 

/, < acrit. 
We shall consider the set of problems for 

which P(X). f(x), $(xf. &JI) are functions of at 
least class C”’ on a < x < b, such that p(x) > 0. 
is monotonically increasing, and ,f(x) > 0, 
Ii/(s) > 0 in a < .X < b. Further it is assumed that 
4($) is a monotonically increasing function of 
II/ such that &+) 2 1 and 4(O) = 1. 

From the above assumptions it follows that 

inu <x < b. (1.5) 
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Case 1 
We shall consider dll//dx > 0 at x = a, and 

d$/dx < 0 at x = b; these conditions correspond 
to heat flowing out of the system in the viscous 
heating problem. With the above conditions 
there is certainly at least one turning point 
because d$/dx changes sign. Neglecting the 
trivial case 1 = 0 equation(l.1) implies that 

Consequently p(x)d$/dx is monotonically de- 

0 in (a, b). 

creasing in (a, b). Since d$/dx changes sign in the 
interval and p(x) > 0 throughout the interval 
this implies that there is one stationary point in 
(a, b) and this must be a maximum. With the 
added restriction of increasing monotonicity 
of p(x), d$/dx will be monotonically decreasing 
in (a, b). 

Case 2 
If d$/dx = 0 at one end point (corresponding 

to an adiabatic heat boundary condition), then 
there is certainly a stationary point, and since 
d+/dx is monotonically decreasing in (a, b) there 
can be no other stationary point in (a, b), so that 
the maximum occurs at either x = a or x = b. 

These results imply that a $,,, always exists 
for a given set of boundary conditions and a 
given I, in the same way one can consider 1 
as a function of e,,,. It may be that $,,, occurs 
at different values of x in the interval as A 
changes although the boundary conditions 
remain the same. 

It will be assumed that A is a continuously 
differentiable function of II/,,, to whatever order 
we require. 

Integrating equation (1 .l) gives 

x a 

Since d+/dx is a monotonically decreasing 
function 

for x0 < x 6 b, (1.7) 

where $(x0) = $,, = $,. 
The monotonicity of 4 implies that 

Consequentlyequations(l.8),(1.6)and(l.7)imply 
that 

” ,I 

x dy 6 $ G M$,) & f(Y) dY. 
s s 

(1.9) 

which gives 

where 

G = [j$/j(,)dy]-’ > 0. 

x0 x0 

The inequality (1.11) can be regarded as pro- 
viding functions of I/I,,, which are upper and lower 
bounds of 1 considered as a function of $,. 

The behaviour of the solutions of equation 
(1.1) depends, in the main, on the order with which 



&$,) increases with $,, as $,,, tends to infinity. 
We shall assume that the asymptotic develop- 
ment of 4 is of the form. 

with 
lim 44+,1 + A+:. (1.12) 

Jl,,+s 

Three cases can be considered with this asymp- 
totic development of 4, namely, 0 d k < 1, 
k = 1, k > 1 the case of interest as far as the 
later work is concerned being when k > 1. 
For many viscous heating problems $(+) = ep@, 
with fl a positive constant. 

In this asymptotic limit 

Using an argument similar to Joseph [l] 
we can now show that the first stationary point 
of A($,,,) is maximum when d2$/dtiZ = 4” > 0. 
Consider tj as a function of the parameter $,,, 
and the variable x, and write 

G* _m < 
,*;- 

*$ 
4ICI, - ‘+wk’ 

(1.13) a* *=c. 
where 

Equation (1.1) can be thought of as identity in 
$, in the sense that it is true whatever II/,,, is 
developed by specifying a value of A < Acri,. 

Differentiating equations (1 .l) and (1.4) gives x0 x0 

It can be seen from equation (1.13) that as 
$, + 30,1 -+ 0. This implies that the parameter 
is not a unique function of $,. Both the upper 
and lower bounds for 1 given by (1.11) possess 
two zeros and must, if continuous functions of 

* m, each possess at least one maximum. Since 
(1.11) implies that no solutions of equation (1.1) 
exist when A exceeds the maximum value of the 
upper bound there must exist a value 3, = Acrit 
above which no solution to (1.1) can be found, 
and below which at least two solutions can exist. 
The above statement applies only to values of 
A in a neighbourhood of Acril. Existence of solu- 
tions has been discussed by Reginer [6] and 
Kaganov [7]. 

& &$ + Af(x)f#l + A&,f$‘$ = 0.t1.141 
[ .'I 

+ f(x)n@j” + )tf(-Y)#;j/ = 0. (1.15) 

with 

B(a)dz (a) + y(a)&a) 

In the special case when d$/dx = 0 at one 
end point say x = a for definiteness, x0 is re- and 
placed by a and equation (1.7) becomes 

. . 

P(a) g (4 + yk4$(4 

and (1.11) becomes = p(b)g (b) + y(b)$(b) = 0. (1.17) 

Multiplying equation (1.14) by $ and (1.15) by4 
_. . 

” - n . and integrating over (a, b) gives 

x {W,,, - i,,)(+i-‘. 
1836 E. A. TROWBRIDGE and J. H. KARRAN 

> 0. 
a a 

= P(b) g (b) + y(b)&) = 0, (1.16) 

. . 
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x f(x)c#n) dx + 1, j f(x)@& dx = 0, (1.18) 
(I 

[p(x)tj$ ]; - jp(x)g$dx +, j 
(I a 

h 

x f(x)& dx + ‘23, 
s 

f(x)~$‘$~ dx 

a 
b b 

+ 1 

s 
f(~)#‘($)~ dx + 1 

s 
f(x)&& dk = 0. 

n II 

(1.19) 

Subtractingequation(l.l9)from(l.l8)andusing 
(1.16) and (1.17) gives 

(1.20) 

when 1 = 0. The functions f, 4, 4” are all 
positive so that the sign of ;i depends simply on 
the function 4. If $ takes the same sign through- 
out (a, b) then 1 is negative and the turning 
point is a local maximum. We shall show using 
a continuity argument that $ must be positive 
throughout (a, b) when fi first vanishes. 

It was assumed earlier that d$/dx > 0 at 
x = a and d+/dx < 0 at x = b, assuming I,+ 2 0 
implies that 

r(4 <Oand*>O -1 
B(a) P(b) ’ ’ 

Equation (1.14) shows that as 1 -+ 0 

so that in this limit d$/dx is monotonically de- 
creasing throughout. We shall now consider the 
various distributions available to tj in the interval 
[a. b]. 

Case 1. d$/dx = 0 at an interior point qf [u, b]. 
Suppose rj < 0 at x = a, then necessarily 

d$/dx 6 0 from the boundary conditions. So that 
in the limit L --+ 0, d$/dx is a monotonically 
decreasing function, which implies that $ is 
never positive. However, if $ = $, at x = x,,, 
then 

$(x,3 II/,) = +,, 

which upon differentiation with respect to 
*, gives 

But d$/dx = 0 when $ takes it maximum value, 
therefore 

II/,=,, = 1 

whatever the value of II/,. 
This result implies that $ < 0 at x = a is 

impossible, in the limiting case 1 + 0. 
It migh be possible, however, for rj > 0 in the 

limiting case and for $ to decrease to a negative 
value as 1 increases. However, as tj + 0, 
d$/d.x + 0 so that in this limiting case the curve 
would again never take positive values and the 
condition tj = 1 at some x0 E (a, b) would be 
violated. Using this continuity argument it 
follows that $ > 0 at x = a for all II up to the 
first zero in its derivative dl/d4,_. This implies 
that $ > 0, d$/dx > 0 in a neighbourhood of 
x = a, for all A, at least until d12/d4,,,aX = 0. A 
similar argument is used at x = b. Suppose 
$ < 0 at x = b, then d$/dx > 0 at x = b. In 
the limiting case 2 + 0 this would violate the 
condition that d$/dx is monotonically decreas- 
ing, since there must be at least two turning 
points if d$/dx > 0 at x = a and dt+$/dx > 0 
at x = b. Hence, $ > 0 is limiting case 1 -+ 0. 
Again it may be possible for $ to become nega- 
tive as 2 increases. However, as 4 -+ 0. d$/dx --t 0 
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at x = b, and this would violate the condition 
of decreasing monotonicity of d$ldx. So $ > 0 
at x = b for 1 increasing, at least until first zero 
in rl is reached. These results imply that llf > 0, 
d$/dx < 0 in a neighbourhood of x = b at 
least until dil/d$,,,aX = 0. 

It is still possible that $ has a zero in (a, b) 
for some h before d&/d#,_ = 0. However, 
if this is so then $ must have at least two zeros 
and $ must be negative on some subinterval of 
(a, b) and have a local minimum there. This 
implies that in some neighbourhood of x = h 
for positive 4, deeds is increasing, which contra- 
dicts the decreasing monotonicity condition 
for positive $. Consequently $ is positive through- 
out [a, b] and d$/dx is monotonically decreasing 
there, (The special case of a double zero at 
some interior point does not invalidate the 
argument). Equation (1.20) now implies that 
at the first zero of 3, the turning point Lctiit($,,,) 
is a local maximum. 

Case 2. d@/dx = 0 at an end point, x = a (say) 
A similar argument holds if d$/dx = 0 

(corresponds to d$/dx = 0) at one end point, say 
x = a for definiteness. Then $ must be positive 
at x = a for all 2 before 2 = 0 and consequently 
$ > 0 in the interior of the interval, although it is 
possible for $ = 0 at x = b provided d$/dx < 0. 

Case 3. t,& = 0 at both end points 
If $ = 0 at both end points, then d$/d.x must 

be monotonically decreasing in a neighbourhood 
of each end point and by the same argument as in 
Case 1, I,& has no other zeros on the interior of 

[a, bl. ‘ 
In all cases under consideration there exists 

a value Acrit of i such that locally no solutions of 
(1.1) subject to (1.4) exist for A > Acrit. while at 
least two solutions exist for 1 <: ;Iciir. 

Joseph [2] has shown that the values of R > 0 
for which (1.1) and (1.4) have positive solutions 
I++ are bonded above by a composite expression. 
If equations (1.1) and (1.4) are compared with the 
linear homogeneous, self adjoint system 

I\ 

& p(x)2 + Af(x)$ = 0, 
_[ “I (1.21) 

1 

(1.22) 

it can be shown that 

J? C_&&#M’~(lc/)3 dx 
a 

\I/ 

5: ~~~#(~) dx 

< max- 
*=o (6($)’ 

A. II 

Yq= 

: ! 1 + ,b&G(IJl)dx -’ < A, 

(1.23) 

i f$,$ dx ‘“,+I 

where A,, 9, are the least eigenvalue and associ- 
ated eigenfunction of system (1.21) and 1.22). 
This result implies that 

I < no min 
ma Y/#~). 

~,l~fn + 1 
(1.24) 

2. FLUID MODEL 

Throughout this paper we shall assume a 
power law constitutive equation (see Pearson 
[15]) which expresses the stress, to within an 
arbitrary isotropic pressure, as a function of the 
deformation rate tensor and temperature. The 
constitutive equation can be written in Cartesian 
tensor notation as 

ejj = -pbij $ 21--zsC0 e-btT-To)(12)-“e,j 

i,i = 1,2,3, (2.1) 

where tij, eli and _6, are, respectively, the stress 
tensor, the deformation rate tensor and the 
Kronecker delta. I, = $eiieijis thesecond variant 
of eijr p the isotropic pressure and T the absolute 
temperature. C,, s and b are constants for any 
given fluid modelled by equation (1.25). When 
s = 0, C, becomes equal to the Newtonian 
viscosity. T, is a convenient reference tempera- 
ture at which C, is measured. 
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3. COUE’ITE AND POISEUILLE FLOWS 

In this section we shall show that for those 
flows to which closed form solutions exist the 
upper bound of I estimated from the linear 
Sturm-Liouville system (1.21) and (1.22) is 
accurate to within 5 or 6 per cent. Numerous 
exact solutions exist in the literature for fluids 
modelled by a purely viscous constitutive 
equation, Kearsley [S], Gavis, and Laurence 
[9, lo], Nihoul [ll], Gruntfest [12], Martin 
[13] and Turian [14]. 

Plane Couetteflow 
We shall consider the simple shear flow of a 

viscous fluid between two flat plates. Referred 
to a rectangular Cartesian coordinate system 
Oxyz we assume that the lower plate lies in the 
plane y = 0 and the upper plate lies in the plane 
y = h, where z is measured parallel and y at 
right angles to the plate. The upper plate is 
assumed to move with a constant velocity V 
in the z-direction while the lower plate is con- 
sidered to be at rest. The steady state equations 
of motion and energy for incompressible fluids 
neglecting heating by convection are 

dt 
zy=O 
dy ’ 

(3.1) 

and 

KdZT+t dv’=(). 
dy2 =y dy 

(3.2) 

The thermal conductivity, K, of the fluid is 
assumed constant. 

The only non-zero stress component is given 

by 

t 
ZY 

= 21-2~~ e-b(T-To) 

where (0, 0, v,(y)) is the velocity distribution 
between the plates. Two sets of boundary con- 
ditions will be specifically considered here, 
although more general homogeneous boundary 
conditions can easily be discussed. (a) Plate 
temperatures prescribed and equal. 

vz = 0; T = T, when y = 0, 

VZ = u; T = T, when y = h. 
(3.4) 

(b) Stationary plate temperature prescribed, 
moving plate thermally insulated. 

vz = 0; T = T, when y = 0 

dT (3.5) 
VZ = U; - = 0 when y = h. 

dy 

We shall consider the dimensionless variables 

W = vJW, Y = y/h, and 4 = b(T - T,)/G, (3.6) 

where the Griffith number is defined as 

G = bC0U2-2”h2” 

K . (3.7) 

The Griffith number determines whether heat 
generation will lead to temperature differences 
within the melt sufficient to affect the velocity 
distribution locally. 

The momentum equation can be integrated 
once to give 

tZy = T* for all y. (3.8) 

Substituting in the energy equation and non- 
dimensionalizing results in the second order 
ordinary differential equation 

$$ + ;1 exp {G4(n - 1)) = 0, (3.9) 

where 

2 - 2s 
n = -andil = 

bh2z*” 

1 - 2s C;- i GK 

is the stress parameter. The boundary conditions 
to be satisfied are. 

(4 W=O; f$=OatY=O. 

W=l; 4=OatY=l. 
(3.10) 

09 W=O; $=OatY=O. 

W= I; d& = Oat Y= 1. (3’11) 
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Case (a) 
Solving the differential equation (3.9) and 

using the specified boundary conditions gives A 
explicitly as a function of +,,, 

G(n - tU = 8exp{-G(n - I#,,,\ 

exp G(n,- I)+,,, (3.12) ‘. 

Stationary points occur at dA/d+maX = 0. The 
value of Cp,,, corresponding to the first stationary 
point of a positive 3, is 

G(u - l)&,,,,,i, = 1.187. (3.13) 

The critical value of ,? is given by 

G(n - l)n = 3-572. (3.14) 

Case (b) 
The explicit relation for /1 is virtually the same 

as for case (a) 

G(n - 1)12 = 2exp {-G(n - 1)4,,,) 

G(n - 1) 2 
exp 

2 4 11 max ’ (3.15) 

giving critical values 

G(n - l)&,,,,,it = 1.187 

and Gfn - lQ_ = 0.893. (3.16) 

The values of icrit have been obtained by Turian 
[ 141 as a special case in his discussion of critical 
stress parameters for an Ellis fluid in plane 
Couette flow. Joseph [23 has obtained a similar 
value with n = 2 for a Newtonian fluid. Winter 
[22] has shown that for his analysis of the un- 
steady temperature field in plane Couette flow 
with the viscosity depending linearly upon 
temperature a critical value of /?S, arises. fl is 
the temperature coefficient in the viscosity 
and BI is a Brinkman number which incorporates 
a shear stress. Winter finds that the critical value 
for /?BI is n2, above this value the heat generated 
by dissipation cannot be conducted to the walls 
rapidly enough: consequently the temperature 
increases continuously with increasing time to 
higher and higher values, Gruntfest [12] intro- 

duces a time ratio in his work on the unsteady 
temperature field which is, however, simply 
related to the shear stress parameter developed 
by Joseph [2], and in this paper. He finds that 
the critical value of the time ratio above which 
the temperature increases without limit is 0.88, 
and themaximumsteadyvalueofthetemperature 
is 1.19, in agreement with this paper. For values 
of R > Ibcrit no steady state solutions to the 
problem exist locally, while for 1 < Ewcrit one 
value of ,I can correspond to two distinct 
maximum temperatures in the flow. The homo- 
geneous, self adjoint, linear comparison system 
which gives an estimated upper bound for Acril 
will be 

w + AGin - 114 = 0, (3.17) 

and the boundary conditions (3.10) and (3.11). 
For the case of exponential temperature de- 

pendence referring to equation (1.231, max (Jey) 
occurs at y = 1 and takes the value e- ‘. An 
estimated upper bound for Acrit will then be 
Rcrit = _4,/e, where I& is the first positive eigen- 
value of the linear comparison system. Putting 
/lG(n - 1) = k’, the linear Sturm-Liouville 
system gives k as the root ofsink = O(case (a))and 
cos k = 0 (case (b)). 

The estimated values of Acrit are 

case(a): G(n - l)Acri, = $ = 3-632; 

(3.18) 

case(b): G(n - l)Acri, = -ii = 0908. 

It can be seen that the error in the estimated 
stress parameter is approximately 2 per cent, 
independent of the power law parameter n. 

Poiseuille cylindrical pipeflow 
The governing equations for the steady flow 

of viscous fluid in a cylindrical pipe with circular 
cross section referred to cylindrical polar co- 
ordinates (r, 0, z) are 
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Linear momentum 

J$(rt,,, = - %, (3.19) 

where the z-axis is considered to be along the 
centre of the cylinder parallel to the generators,, 
and 

Energy 

Kd dT 

--( ) 

do 

r dr 
rdr + tvz-$ = 0. (3.20) 

The energy equation (3.20) expresses the fact 
that all the heat generated by internal friction 
within the pipe is assumed to be conducted 
away radially. 

The only non-vanishing stress components 
are tIZ and tzz given by 

-%& 

dr ’ 
(3.21) 

tzz = -p. (3.22) 

We shall discuss the simple boundary con- 
dition vZ = 0: T = To at r = R, the wall of the 
cylinder. The only difficulty that arises from 
consideration of a general homogeneous heat 
flux boundary condition is algebraic. 

The momentum equation again can be inte- 
grated to give 

where the requirement of finite velocity gradient 
at r = 0 enables the constant of integration to 
be set equal to zero. 

Writing 

dv dp 
-2 = sgn- 
dr dz 

(3.24) 

in order that a negative pressure gradient 
corresponds to negative velocity gradient even 
for general non-integer values of l/l - 2s and 
substituting into the energy equation results in 

X = 0. (3.25) 

Again introduce the dimensionless variables 

I = f, $ = b(T; T,), G = bC,RZRU’2’ 

(3.26) 
with U a characteristic velocity, for example, 
the mean flow velocity Q/nR2, with Q the 
volumetric flow rate. 

The energy equation is given in non-dimen- 
sional form as 

d 

d.y 
+ jlx”+l eO-l)Gd = 0 , (3.27) 

where 

I”= 
GK2”C;- ’ 

is a pressure gradient parameter. The boundary 
conditions are C#I = 0 a_. x = 1, d&dx = 0 at 
x = 0 (symmetry) so that the maximum tempera- 
ture occurs at the pipe centre. This equation 
has been solved in closed form by Martin [13], 
who showed that a physically realisable flow 
is possible only if 

G(n - l)L Q q (3.28) 

by consideration of the roots of a quadratic 
equation. This is essentially equivalent to finding 
the first stationary point for 1 considered as a 
function of c$,,. 

One finds that a stationary point occurs when 

~,,X = t, (3.29) 

which consequently gives 

G(n - l)Lt = v. (3.30) 
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The linear comparison system for an esti- flat plates and annular flow are given by Martin 
mated value of I is now given by [13]. The results obtained by applying the 

x2 3 + ~2 + AG(n - l)~“+~d = 0 
general theory in Section 1 to these flows are 

d.u2 . d?c 
(3 31) , . given in [27]. 

and 

$=Oat.x=l, d$ d?c = 0 at .x = 0. (3.32) 

The substitution x = 5” reduces the differential 
equation to that of the zeroth order Bessel 
equation of the form 

5 
zd24 d4 
@y + r,, + r2t24 = 0 (3.33) 

with 

2 

G(n - 1). (3.34) 

The eigenvalues are given by the roots of the 
equation 

J,(Y) = 0. (3.35) 

The smallest positive roots of this equation is 

y = 2.405. (3.36) 

This implies that 

G(n - l)‘crit es1 
- (2.4;5)2 (n ‘4 2)2. (3.37) 

Consequently 

Lit exact _ 2e 
---(FziGp ‘crit est 

= 0.94. (3.38) 

These results indicate that the error in taking the 
estimated lZErit is only 6 per cent, again indepen- 
dent of the power law parameter n. 

and Pearson [17] for full developed flow in the 
metering section of a single screw extruder. 
A detailed account of the approximations made 
in this model and other similar models is given 
in a report by Martin, Pearson and Yates [18], 
and Zamodits and Pearson. Further references 
to screw extrusion models can be found in 
Tadmor and Klein [19]. In the model of 
Zamodits and Pearson a single-start screw of 
outer diameter D is considered with constant 
channel depth h, and constant 1 (this implies a 
constant helix angle a). An unrolling procedure 
can be adopted if h/D @ 1. This allows the 
effects of curvature to be neglected and the helical 
flow can be replaced by flow in a long shallow 
box. For almost all polymer melts the viscous 
forces generated are very large compared to 
those due to gravity and inertia (i.e. the Reynolds 
number associated with the flow is small com- 
pared to unity). The linear momentum equation 
can be replaced by a simple stress equilibrium 
equation. With this assumption it does not 
matter whether the screw is considered to move 
relative to a stationary barrel or vice-versa. 
Zamodits and Pearson considered the (three- 
sided) bottom of the channel to be stationary 
and the plane representing the barrel to move 
relative to it. 

The two cases above should give some conli- 
dence that Acrit estimated from the linear com- 
parison equation is a reasonable upper bound 
for the exact AEri,. 

A right-handed Cartesian coordinate system 
is chosen, with the x axis pointing in the ‘down 
stream’, direction, i.e. parallel to the walls of the 
box, the y axis perpendicular to the barrel. and 
the z axis roughly perpendicular to the flights. 

Other well known steady flows have been If further a wide channel approximation is 
investigated in a similar manner. The energy used, namely the depth h is small compared with 
equations for Couette flow between concentric the pitch 1 of the screw, then the lubrication 
cylinders, mixed drag and pressure flow between approximation (see Pearson [15]) can be used. 

4. SCREW EXTRUSION OF POLYMER MELTS: 
THE FINITE DUCT 

We shall consider the model used by Zamodits 



A DISCUSSION OF CRITICAL PARAMETERS 1843 

This implies that over most of the flow region 
the velocity distribution is given solely by the 
relative motion of the top and bottom surfaces 
of the channel and by the local pressure gradient 
grad p where p = p(x, z). The problem involves 
only two velocity components ux and uz, which 
are taken to be functions of Y only. The depth h 
and grad p are taken to be constant. 

The effect of the flight walls is felt, in this model, 
solely through the restriction it places on the 
cross-stream mass flux 

4, = s” u, dy. 
0 

(4.1) 

For a perfectly fitting screw 

q, = 0. (4.2) 

Zamodits and Pearson have considered fully- 
developed temperature dependent solutions for 
which the temperature T varies only with y (i.e. 
local solutions). These fully-developed flows 
seem to be applicable only in the last few turns 
of screws with long metering sections. 

The .x momentum equation is 

The z momentum equation is 

(4.3) 

(4.4) 

No-slip boundary conditions imply that 

ux = NnD cos a, 

uz = NnD sin M at the barrel y = h, (4.5) 

and 

ux = uz = 0 at the screw y = 0, (4.6) 

where N is the rate of revolution of the screw. 
The energy equation is 

K dZT + exytxy + ezytzy = 0, 
dy2 (4.7) 

where lx,,, t_, are the non-zero shear stress com- 

ponents and exyr ez,, are the non-zero components 
of deformation rate. 

We shall consider (for definiteness) an insula- 
ted screw and a barrel maintained at a convenient 
specified temperature. Again homogeneous heat 
transfer boundary conditions can be considered. 

These conditions imply that 

dT 
- = 0 at y = 0, and T = To at y = h. (4.8) 
dY 

Using a purely viscous power law constitutive 
equation (see 2.1) the only non-zero shear 
stress components are given by 

t 
XY 

= co e-b’T-To) [(%$ + (%)‘I-‘ 

xdUX_Cdux 
dY dy ’ 

(4.9) 

tyZ = co ,-W--To) [(!!J + (y]-’ 

du du 
x--I=c--l. 

dy dy 
(4.10) 

A first integral of the momentum equations (4.3) 
and (4.4) yield 

c? = $Y - y,), (4.11) 

and 

C%=P,$y-Y,). (4.12) 

where yr, y, are zero stress levels and P, is a 
dimensionless pressure gradient ratio 

8~ ap 

-I- aZ ai 

If the dimensionless variables 

y = Ylh, Y, = Y,lh, y2 = Y,lh 

ux = % 
nDN cos a’ 

uz = uz 
xDN sin a 

(4.13) 
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together with 

$= 
&T - To) 

G 3 
G = bC,(NrrD)2- 2sh2s 

K 

(4.14) 

are introduced, the energy equation (4.7) re- 
duces to 

2 + A{( Y - Y,)” + Pf( Y - Y2)2 )“‘2 

where 

x e(“-“Cd = 0, (4.15) 

h”+2b 2” 
A= I I ax 

KGC",- ’ 
(4.16) 

is a dimensionless pressure gradient parameter. 
The temperature boundary conditions are 

given by 

d$ - = 0 at Y = 0 and 4 = 0 at Y = 1. (4.17) 
dY 

Zamodits and Pearson prescribed A then iterated 
on the three integral equations 

coscc=A”-ije (n-1)G4(Y - Yr)F(Y)dY (4.18) 
0 

since = A’-rie’ ( -‘)G’+,(Y - YJF(Y)dE: (4.19) 
0 

0 = i [ P,(y - Y;)F(y) e’“-‘rG@dYdy, (4.20) 

where 

F(Y) = {(Y - Y,)’ + P;(Y - Y2)2)“‘2. (4.21) 

The dimensionless flow rate Q is then calculated 
after convergence from 

Q = A”- ’ / i eGcn-l)@F(y) (y - Y,) dY dy. (4.22) 
00 

The double valued characteristics obtained by 
Zamodits and Pearson must have been obtained 

by trying starting values for Yr, Y, and P, in 
the iteration scheme. 

The suggestion by Martin [20] that the flow 
rate Q is specified and an iteration scheme de- 
veloped for 1 is more appropriate to the present 
paper. With this scheme Martin has reproduced 
the double valued characteristics of Zamodits 
for large Griffith number. The theory in Section 
1 confirms that for specified Yr, Y, and P,, 
a single value of I < Acri, can be associated with 
two distinct temperature profiles which will 
satisfy equation (4.15). Substituting these values 
for Yt, Y2, P, and 1 together with the distinct 
temperature profiles into equation (4.22) will 
give two distinct values for Q corresponding 
to a single value for A. This suggests that mathe- 
matically it is the choice of a non-linear heat 
source which produces the double valued 
characteristics obtained by numerical computa- 
tion. It is to be noted that double valued charac- 
teristics are not observed in the isothermal case. 
Physically the pressure gradient parameter can 
be increased to a certain critical level by increas- 
ing the speed of the screw say, above this level 
the heat generated by viscous dissipation cannot 
be conducted away to the barrel walls rapidly 
enough and no steady state condition will exist. 
The temperature will increase indefinitely. 
Zamodits and Pearson have given a physical 
explanation for a decrease in Q when i increases, 
but they have not tried to explain why they obtain 
double valued characteristics. 

The linear comparison system for the finite 
duct problem is 

$ + M(Y)@ - l)G4 = 0, (4.23) 

together with equations (4.17). Evaluation of 
1 from this system should be useful in the sense 
that it gives a bound on the first guess for i. in 
the iteration scheme. Obviously a choice of 
A > Acrit would not provide a solution to the 
system. It is noticeable that Martin [20] has 
values of pressure gradients for which he says 
a solution is unobtainable. Typical numerical 
values of A(n - 1)G for specific Y,, Y,, P, and II 
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are given in Tables l-3. It must be noted that the 
condition of no mass flow in the transverse 
direction implies that Uz has a stationary 
value in the interval 0 < Y < 1, so that neces- 
sarily 0 < Yz < 1. 

Tables l-3. Critical value of the pressure gradient parameter i, 
for various tlalues of Y,, Y, and P, (n = 1.31) 

Table 1. P, = @2 

v, 0.10 0.30 0.50 

r, 

- 0.20 2,100 2.106 2.094 
-0.15 2.372 2.379 2.363 
-0.10 2.708 2.717 2.693 
- 0.05 3.126 3,137 3.099 

0.00 3.652 3,661 3,601 
0.05 4.298 4.306 4,211 
0.10 5.046 5.068 4.932 
0.15 5,862 5.925 5,740 
0.20 6.673 6.800 6,656 
0.25 7,314 7.529 7,251 
0.30 7.556 7.844 7.558 
0.35 7,248 7.530 7.308 
0.40 6.516 6.745 6.605 
0.45 5.638 5,804 5.729 
@50 4.808 4.922 4.884 

_ 

Table 2. P, = 1.0 
z-p 

r, 0.10 0.20 0.30 0.40 0.50 

y, 

- 0.20 1.813 1.903 1.921 1.866 1.752 
-0.10 2.207 2.352 2.379 2,285 2.101 

0.00 2.715 2.954 3.000 2.837 2.535 
0.10 2.288 3.704 3.797 3.523 3,033 
O.‘U 3.704 4,425 4.650 4.235 3.503 
0.30 3.797 4.650 5,108 4.644 3.754 
@40 3,523 4.235 4.644 4,385 3.626 
0.50 3.033 3.503 3.754 3.626 3.183 

____ 

DISCUSSION AND CONCLUSIONS 

We have been able to present evidence that 
various models of steady flow problems with 
temperature dependence exhibit double-valued 
solutions. This means that for a given pressure 
gradient, say, there exists two entirely different 
temperature profiles. Since the energy and linear 
momentum equations are coupled through the 
temperature, the two different temperature 
profiles give rise to two distinct velocity profiles. 
Consequently one expects to obtain two different 
flow rates for a given pressure gradient. Further- 
more, it has been shown that there exists a 
value of the pressure gradient (shear stress) above 
which no solutions to the steady problem can 
be found. Within the limitations of the models 
used this implies that for certain pressure gra- 
dients (shear stresses) no steady flow can take 
place. It has been pointed out, Pearson [21], that 
in practice a certain amount of heat leakage into 
the apparatus does take place. It is not to be 
expected that instability criteria for a complicated 
thermo-mechanical system can be generated 
from a single mechanism. Nature is far more 
devious than this. We are saying that if tem- 
perature were the dominant feature of the 
stability mechanism then the critical pressure 
gradients will lie in a neighbourhood of the 
calculated values. 

Zamodits and Pearson [17] have given a 
physical explanation of certain regions of the 
characteristics they have obtained for their 
screw extrusion model. We have shown why 
their assumed theoretical model gives double- 
valued pressure gradient flow ratecharacteristics. 
The exponential dependence upon temperature 

Table 3. P, = 5.0 
=p ___- 

yz 0.10 0.15 0.20 0.25 0.30 0.35 @40 0.45 0.50 
y, 

- 0.20 0.567 0.647 0.722 0.777 0.795 0.767 0.709 0.620 0.539 
0.00 0602 0.695 0.786 0.857 0.883 0.848 0,766 0.667 0.572 
0.20 0.617 0.720 0.825 0.909 0.942 @904 0.810 0.698 0.593 
0.40 0.609 0.711 0.816 0.904 0.942 0.909 0,817 0,764 0.598 
0.60 0585 0.678 0.772 0.849 0.883 0.871 0.778 0.679 0.583 
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of the viscosity and the coupling of the momen- 
tum and energy equations will lead to an ordinary 
differential equation which predicts such charac- 
tersistics. It is easy to believe that if internal 
friction produces heat at too great a rate that 
it cannot be conducted away at a rate sufficient 
to establish steady fully developed conditions. 
It is harder to believe that in practice for a 
given pressure gradient the fluid has a choice of 
two fully developed temperature profiles. The 
answer to this problem may lie in the way that 
the temperature profile has developed along the 
screw extruder. Martin et al. state that in practice 
fully developed flows will not readily arise 
although such solutions effectively yield upper 
limits on the temperature gradients that can be 
achieved in the melt. Also in practice convective 
effects caused by the presence of flight walls will 
be highly important. The estimation ofl from the 
linear comparison system could be some help 
in deciding on values for the first guess in the 
iteration scheme used to calculate pressure 
gradient-flow rate characteristics. 
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APPENDIX 

Cam~fftationa~ Scheme 
1. General method 

We are concerned with the calculation of the smallest 
7, 232 (1968a). eigenvalue of equations of the form 
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yy*+ IF(Y)4 = 0 (A4 

subject to homogeneous boundary conditions 

h, g(O) + k,+(O) = 0 

64.2) 

h, $ (I)+ k,+(l) = 0. 

We construct a complete set of orthogonal functions 
{4.(Y)}, n = 1.2,. which satisfy the boundary conditions 
(A.2) and express the eigenfunction 4 as an infinite series 

(A.3) 

We then substitute a finite number of terms of (A.3) in (Al) 
converting the problem into an algebraic eigenvalue problem. 

2. Construction oJ‘ the orthogonal functions 
Consider the function 4 = eaY cos WY This function 

satisfies the equation 

9-2a$+(a’+w9#J=0 
dY2 

and satisfies the boundary conditions (A.2) if 

(i) h,cc + k, = 0 

(ii) h,w sin w = (h,a + k,) cos w. 

We assume that h, # 0. (If h, = 0, we construct a set of 
orthogonal functions in a similar manner starting with 
+5 = e’r sin WY) We thus have a = - k,/h,, and w a root of 
the equation Y tan Y = K where K = (k,hO - k,,h,)/h,h, if 
h, # 0, or of the equation cos Y = 0 if h, = 0. Let wr, wa, 

be the positive roots of the equation Ytan Y = k (or of 
cos Y = 0 if h, = 0) arranged in order of increasing magni- 
tude. and let 9, = e”r cos w.Y, n = 1,2.. . The functions 
(6.(Y) form a complete set of orthogonal functions on the 
interval [0, l] with respect to the weight function eezaX 
being the eigenfunctions of the Sturm-Liouville system 

subject to boundary conditions (A.2). 

3. Matrix formulation 
Having constructed the eigenfunctions {4.(Y)}, we substi- 

tute a finite approximation for the eigenfunction 

into (A.l) and derive the equation 

,$ a,(a2 - ~$4~ - 2a t anwn ,f b,,$, 
“=I n=, In=, 

N N 

+ 1, C a, C cnmk = 0, 
“=I n-L 

where 

sinw”Y=fb.,,,cosw,Y 
m=t 

@)cos W”Y = f c,,cos w,Y 
m=1 

and I, approximates 1. 
This leads to the matrix equation 

Ea = I,Fa (A.4) 

where E and Fare N x N matrices whose (n, m) elements are 
given respectively by 

2aw,,,b,,+ m # n 
e nn = { 2aw,bnn + wz - a’, m = n, 

f”, = cd 

and a is the column vector (a,, a2,. . a/. 
If we let pN = l/& and G = E-IF, then (A.4) becomes 

((G - /+)a = 0). (A.5) 

4. Computation 
(i) The matrix E is well-conditioned in general, the size of 

the elements decreasing away from the main diagonal 
and the method of Gaussian elimination with pivotal 
condensation was used to evaluate E-l. 

(ii) Since the smallest value of 1 was required, the power 
method was used to evaluate the largest eigenvalue 
of equation (A.5). 

(iii) The positive roots of equation Y tan Y = K were 
found using an iterative method based on the equation 

Y = mn’(K/Y). 

(iv) The computations were carried out on an I.C.L. 1903A 
computer at Lanchester Polytechnic. The size of N 
required to give three place accuracy naturally varied 
according to the values of the parameters, but in most 
cases N = 8 was sufficient. Mill time also varied, an 
average time for the calculation of a single eigenvalue 
being 6s. 

(v) The Tables l-3 were produced in the case of the screw 
extruder for (n = 1.31) for various values of the para- 
meters Y,, Y, and Pi, the tabular values being those for 
1/e and the boundary conditions d$/dY(O) = 0, e%(l) = 0. 
In this case 

F(Y) = [(Y - Y,)Z + P;(Y - Y*)y. 
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DISCUSSION SUR DES PARAMETRES CRITIQUES QUI PEUVENT INTERVENIR DANS 

L’ECHAUFFEMENT PAR FROTTEMENT POUR UN FLUIDE NON-NEWTONIEN 

R&urn&Des Bcoulements permanents entitrement Ctablis de fluides visqueux non-newtoniens avcc 
gbnbation de chaleur par viscositt sont en g&&al reprCsentis par des systtmes diffirentiels de Sturm- 
Liouville. On montre que sous certaines conditions, les valeurs propres non-lintaires du systtme prennent 
une valeur critique au-dessus de laquelle on ne peut obtenir de solutions locales. La thkorie est appliqute 
& des situations sp&cifiques d’&coulement et dans chacun des cas une limite supCrieure est evalute pour 
ce parametre critique. On montre que le terme non-lintaire de gCntration.de chaleur est responsable des 
caractkristiques de dCbit oti le gradient de pression a deux valeurs dans les modtles de systkmes d’extrudage 
par vis. Des valeurs calcultes de la limite superieure du paramktre critique sont don&es pour un modtle 

spbcifique d’extrudeur a vis. 

DISKUSSION KRITISCHER PARAMETER, DIE IN STRi)MUNGEN 
NICHT-NEWTONSCHER FLijSSIGKEITEN BE1 AUFHEIZUNG DURCH REIBUNG 

VORKOMMEN 

Zusammenfassung~Vollausgebildete stationlre StrBmungen von viskosen nicht-Newtonschen Fliissig- 
keiten mit Aufheizung durch Reibung werden gewtihnlich durch nichtlineare Sturm-Liouville-Differential- 
Gleichungssysteme dargestellt. Es wird gezeigt. dass unter bestimmten Bedingungen die nichtlinearen 
Eigenwerte des Systems einen kritischen Wert annehmen, oberhalb dessen keine lokalen Liisungen mehr 
angebbar sind. Die Theorie wird auf spezilische Str6mungssituationen angewendet und die obere Grenze 
fiir diesen kritischen Parameter wird fiirjeden einzelnen_Fall ausgewertet. Es wird gezeigt, dass der Ausdruck 
fi.lr die nichtlineare WHrmeerzeugung verantwortlich ist fiir die Durchllusscharakteristik mit doppelt 
gewertetem Druckgradient bei den Modellen fiir Schnecken-Extruder-Systeme. Es wurden berechnete 
Werte der oberen Grenze des kritischen Parameters fiir ein spezielles Model1 eines Schnecken-Extruders 

angegeben. 

AHA,TlkIB KPHTMYECKBX IlAPAMETPOB B IIOTOICE HEHblOTOHOBCKOfl 
XHAICOCTH rIPI, HrZrPEBE TPEHkIEM 

AHHOTaIJHR-nOJIHOCTbIm pa3BlfTbIe CTaq&lOHa,,HbIe TeYt?HIlR YHCTO BR3KHX HeHbIOTOHOBCKItX 

X(IIRKOCTefi C TeIIJIOBbI~WIf2ILiE!M 3El CgeT TPeHPiR 06bIYHO OIIllCbIBEUOTCR CIlCTeMOti HWIllHeiHbIX 

ALI@@epeH~INIbHbIX ypEiBHeHEiti TllIIa ~TypMdhJ’BWWI. ~OKEl3aH0, 4TO IIpll OIIpeneneH- 

HbIX j’CJIOBRRX HeJIAHefiHbIe CO6CTBeHHbIe 3HaqeHLIFl CEiCTeMbI IIpHHLiMaloT IEpkITHWCKOe 

3HaYeHLie, BbIIIJe KOTOPOI’O JElKaJIbHbIe peIIIeHllR HeBOSMOX(Hb1. Teopmn IIpMMeHHeTCH K 

HOHKPHTHbIM CJIJ’WRM TFieHIIFI, II B KamAOM CJIyWe OIIpe~eJIFRTCR BepXHHt IIpeAt%R AaHHOrO 

KpATasecHoro napaMeTpa. 
nOKlBaH0, YTO XapaKTepHCTHKLf CHOPOCTH IlOTOKa, BbI3BElHHOrO J’ABOeHHbIM (II0 CpaBHeHHIO 

C 06bNHbIM) rpa;lHeHTOM AaBJIeHHR B MOAWIRX BHHTOBbIX 3KCTPJ’WPHbIX CRCTt’M, 06yCJIOBneHbI 

HWIHHetiHOCTbtO TPIIt3 TeIIJIOBbIAWIeHlUI. ~PEIB~ARTCH 3Ha9eHHn sepxHer0 npenena KpaTri- 
‘leCKOr’0 IIapaMeTpa AJIfl KOHKpeTHOti MOAeJrIl BHHTOBOPO 3HCTpJ’Aepa. 


